
ObjectBegin "pCubeShape1"  # {
  SubdivisionMesh "catmull-clark" [ 4 4 4 4 4 4 ] 
  [ 2 3 1 0 4 5 3 2 6 7 5 4 0 1 7 6 3 5 
      7 1 4 2 0 6 ] 
    [ "interpolateboundary" ] [ 0 0 ] [ ] [ ] 
    "vertex point P" [ -0.5 -0.5 0.5 0.5 -0.5 0.5 -0.5 0.5 0.5 0.5 0.5 0.5 
      -0.5 0.5 -0.5 0.5 0.5 -0.5 -0.5 -0.5 -0.5 0.5 -0.5 -0.5 ] 
    "facevertex float[2] st" [ 0 0 1 0 1 1 0 1 0 -1 1 -1 
      1 0 0 0 0 -2 1 -2 1 -1 0 -1 
      0 -3 1 -3 1 -2 0 -2 1 0 2 0 
      2 1 1 1 -1 0 0 0 0 1 -1 1 ] 
ObjectEnd  # }

ObjectBegin "pCubeShape2"  # {
  PointsGeneralPolygons 
    [ 1 1 1 1 1 1 ] 
    [ 4 4 4 4 4 4 ] 
    [ 2 3 1 0 4 5 3 2 6 7 5 4 0 1 7 6 3 5 
      7 1 4 2 0 6 ] 
    "vertex point P" [ -0.5 -0.5 0.5 0.5 -0.5 0.5 -0.5 0.5 0.5 0.5 0.5 0.5 
      -0.5 0.5 -0.5 0.5 0.5 -0.5 -0.5 -0.5 -0.5 0.5 -0.5 -0.5 ] 
    "facevarying normal N" [ 0 0 1 0 0 1 0 0 1 0 0 1 
      0 1 0 0 1 0 0 1 0 0 1 0 
      0 0 -1 0 0 -1 0 0 -1 0 0 -1 
      0 -1 0 0 -1 0 0 -1 0 0 -1 0 
      1 0 0 1 0 0 1 0 0 1 0 0 
      -1 0 0 -1 0 0 -1 0 0 -1 0 0 ] 
    "facevarying float[2] st" [ 0 0 1 0 1 1 0 1 0 -1 1 -1 
      1 0 0 0 0 -2 1 -2 1 -1 0 -1 
      0 -3 1 -3 1 -2 0 -2 1 0 2 0 
      2 1 1 1 -1 0 0 0 0 1 -1 1 ] 
ObjectEnd  # }

Above are the two different representations of geometric types. The first one is polygon and second one 
is subDivision mesh. This is the format in which we have to feed the data to the renderer. There can be 
other geometric types also. For example particle, patch, curves etc. A single type of geometry should be 
having fixed set of arrays as well as couple of other arrays. Most of the cases, we do have arrays of 
integer and double type.

The geometries that are mentioned above is a simple cube of 8 vertices, where in real production we 
have much bigger objects contains thousand and in some cases million of vertices or points.

The idea is to store this data in HD5 format from our 3d application. For that we need to have an 
exporter and once the file has been created an another application that will read this data back and feed 
to renderer at render time.

Feeding back this  data  to  the renderer  is  simple.  For example,  we'll  retrieve the arrays  stored for 
particular objects back in integer or floating point arrays and pass these arrays to renderer's library 



function. The library function to pass data for polygon type of objects is :

RiPointsGeneralPolygonsV(   RtInt npolys,
  RtInt nloops[],
  RtInt nvertices[],

   RtInt vertices[],
  RtInt n,

    RtToken tokens[],
  RtPointer parms[]);

To pass all the arrays required for this function, we'll read from HD5 file into separate arrays and feed 
to this function.

I gave a quick look on HD5 site and it's looking quite promising. I personally feel that introduction of 
HD5  in  our  production  pipeline  can  play  a  very  important  role.  Before  we  actually  start  the 
development we would like to know you expert advise for the concern. I would really appreciate if you 
can show us the right way to go ahead. 

Best Regards

Prashant saxena
Founder
Pantheon Studios

www.pantheon-studios.in


