
PROPOSAL TO ENABLE HDFql
WITH BATCH-PROCESSING CAPABILITIES

1. INTRODUCTION

Currently, two main approaches (extremes) exist to batch-process HDF5 data: on one end, the usage of existing HDF5

(imperative) APIs, which are performant but somewhat complicated to operate with due to users being exposed to

low-level HDF5 details and have to deal with the complexity of accessing multiple HDF5 files, eventually stored

across various locations; in the other end, the usage of high-level frameworks such as Apache Drill, which abstract

users from HDF5 details at the expense of performance and certain HDF5 functionalities – e.g. hyperslab selections.

The present document proposes a middle-ground solution between the two approaches by extending HDFql with

batch-processing features that are easy to use. It consists in allowing HDFql’s SELECT operation to read and

(post-)process multiple datasets/attributes (across various groups and sub-groups) potentially held across multiple

HDF5 files (across multiple directories, sub-directories and locations). The proposed extension will effectively lower

the complexity of batch-processing HDF5 data through (the execution of) one single (HDFql) operation while

guaranteeing excellent performance and availability of HDF5 functionalities.

2. EXAMPLES

As a general rule (and unless certain post-processing functions are employed), when multiple datasets/attributes are

selected (i.e. read), the data is sequentially combined and linearized into a one dimensional array (and independently

of what the datasets/attributes’ number of dimensions and sizes may be). In other words, HDFql’s SELECT operation

reads the selected datasets/attributes and flattens their data as a one dimensional non-overlapping contiguous (big)

array. Users may employ other HDFql operations – e.g. SHOW DIMENSION – to retrieve information about the

datasets/attributes and help interpreting/consuming the one dimensional array in a correct way/appropriate manner. In

addition (and unless certain post-processing functions are employed), in case multiple datasets/attributes are selected

(i.e. read) and have different data types amongst them, an error is raised.

Some examples are presented next to illustrate how the extension of HDFql’s SELECT operation to support reading

and (post-)processing multiple datasets/attributes (eventually across multiple groups/sub-groups and/or HDF5 files

and/or directories/sub-directories/locations) looks in practice and is foreseen to work.

Version 6 rick@hdfql.com Page 1 of 6

1. SELECT FROM dset1, dset2, dset3

• select (i.e. read) datasets dset1, dset2 and dset3 from the HDF5 file currently in use (i.e. open)

• if either dset1, dset2 or dset3 is missing, an error is raised

2. SELECT FROM file1.h5 dset1, dset2, file3.h5 dset3

• select (i.e. read) datasets dset1 from file file1.h5, dset2 from the HDF5 file currently in use (i.e. open) and

dset3 from file file3.h5

• if either dset1, dset2 or dset3 is missing, an error is raised

3. SELECT FROM dset1, CAST(dset2 AS INT), dset3

• select (i.e. read) datasets dset1, dset2 and dset3 from the HDF5 file currently in use (i.e. open)

• convert dset2 as an INT

• if either dset1, dset2 or dset3 is missing, an error is raised

4. SELECT FROM UPPER(dset1, CAST(dset2 AS VARCHAR), dset3)

• select (i.e. read) datasets dset1, dset2 and dset3 from the HDF5 file currently in use (i.e. open)

• convert dset2 as a VARCHAR

• convert all datasets in upper case

• if either dset1, dset2 or dset3 is missing, an error is raised

5. SELECT FROM file1.h5 dset1, CAST(file2.h5 dset2 AS INT), file3.h5 dset3

• select (i.e. read) datasets dset1 from file file1.h5, dset2 from file file2.h5 and dset3 from file file3.h5

• convert dset2 as an INT

• if either dset1, dset2 or dset3 is missing, an error is raised

6. SELECT FROM COUNT(dset1, 10), COUNT(dset2, 15), COUNT(dset3, 20)

• select (i.e. read) datasets dset1, dset2 and dset3 from the HDF5 file currently in use (i.e. open)

• count the occurrence of value 10 in dset1, value 15 in dset2 and value 20 in dset3

• return the count of occurrences as a one dimensional array of size 3

• if either dset1, dset2 or dset3 is missing, an error is raised

Version 6 rick@hdfql.com Page 2 of 6

7. SELECT FROM SUM(COUNT(dset1, 10), COUNT(dset2, 15), COUNT(dset3, 20))

• select (i.e. read) datasets dset1, dset2 and dset3 from the HDF5 file currently in use (i.e. open)

• count the occurrence of value 10 in dset1, value 15 in dset2 and value 20 in dset3

• return the sum of the count of occurrences as a scalar

• if either dset1, dset2 or dset3 is missing, an error is raised

8. SELECT FROM LIKE **/^dset

• select (i.e. read) all datasets found recursively (i.e. stored in groups/sub-groups) that have a name starting

with dset from the HDF5 file currently in use (i.e. open)

9. SELECT FROM CAST(LIKE **/^dset AS INT)

• select (i.e. read) all datasets found recursively (i.e. stored in groups/sub-groups) that have a name starting

with dset from the HDF5 file currently in use (i.e. open)

• convert all datasets found as an INT

10. SELECT FROM /grp LIKE **/^dset

• select (i.e. read) all datasets found recursively (i.e. stored in groups/sub-groups) starting from root group

grp that have a name starting with dset from the HDF5 file currently in use (i.e. open)

11. SELECT FROM file.h5 /grp LIKE **/^dset

• select (i.e. read) all datasets found recursively (i.e. stored in groups/sub-groups) starting from root group

grp that have a name starting with dset from file file.h5

12. SELECT FROM file.h5 / LIKE **/^abc, LIKE def$

• select (i.e. read) all datasets found recursively (i.e. stored in groups/sub-groups) starting from root group

/ that have a name starting with abc from file file.h5 and all datasets that have a name ending with def

from the HDF5 file currently in use (i.e. open)

13. SELECT FROM LIKE **/^dset WHERE DATA TYPE == FLOAT AND attrib > 10

• select (i.e. read) all datasets found recursively (i.e. stored in groups/sub-groups) that have a name starting

with dset from the HDF5 file currently in use (i.e. open)

• only the datasets that are of data type float and have an attribute named attrib with a value greater than

10 are selected

Version 6 rick@hdfql.com Page 3 of 6

14. SELECT FROM file1.h5 / LIKE **/^abc, file2.h5 /grp LIKE **/def$ WHERE EXISTS attrib

• select (i.e. read) all datasets found recursively (i.e. stored in groups/sub-groups) starting from root group

/ that have a name starting with abc from file file1.h5 and all datasets found recursively (i.e. stored in

groups/sub-groups) starting from root group grp that have a name ending with def from file file2.h5

• only the datasets that have an attribute named attrib are selected

15. SELECT FROM ALL USE FILE dset

• select (i.e. read) dataset dset from all HDF5 files currently in use (i.e. open)

• if dset is missing in one of the HDF5 files currently in use (i.e. open), an error is raised

16. SELECT FROM ALL USE FILE dset SKIP

• select (i.e. read) dataset dset from all HDF5 files currently in use (i.e. open)

• if dset is missing in one of the HDF5 files currently in use (i.e. open), the file is skipped (i.e. no error is

raised)

17. SELECT FROM ALL USE FILE LIKE **/^dset WHERE attrib < 15

• select (i.e. read) all datasets found recursively (i.e. stored in groups/sub-groups) that have a name starting

with dset from all HDF5 files currently in use (i.e. open)

• only the datasets that have an attribute named attrib with a value lower than 15 are selected

18. SELECT FROM ALL USE FILE /grp LIKE **/^dset WHERE attrib > 100

• select (i.e. read) all datasets found recursively (i.e. stored in groups/sub-groups) starting from root group

grp that have a name starting with dset from all HDF5 files currently in use (i.e. open)

• only the datasets that have an attribute named attrib with a value greater than 100 are selected

19. SELECT FROM ALL USE FILE dset1, dset2 WHERE id >= 20 AND id <= 25

• select (i.e. read) datasets dset1 and dset2 from all HDF5 files currently in use (i.e. open)

• only the datasets that have an attribute named id with a value between 20 and 25 inclusive are selected

• if either dset1 or dset2 is missing in one of the HDF5 files currently in use (i.e. open), an error is raised

Version 6 rick@hdfql.com Page 4 of 6

20. SELECT FROM USE FILE LIKE ^Y2021 dset1, dset2, dset3

• select (i.e. read) datasets dset1, dset2 and dset3 from all HDF5 files currently in use (i.e. open) that have

a name starting with Y2021

• if either dset1, dset2 or dset3 is missing in one of the HDF5 files currently in use (i.e. open), an error is

raised

21. SELECT FROM USE FILE LIKE October|November LIKE ^dset[1|2|3]$

• select (i.e. read) all datasets that are named either dset1, dset2 or dset3 from all HDF5 files currently in

use (i.e. open) that have either October or November in their names

22. SELECT FROM /data LIKE **/^test.h5$ /grp LIKE dset WHERE color == “Red”

• select (i.e. read) all datasets that have dset in their names starting from root group grp from all HDF5

files found recursively (i.e. stored in directories/sub-directories) that are named test.h5 starting from root

directory data

• only the datasets that have an attribute named color with a value equal to Red are selected

3. EXTENSION

Canonically speaking, the SELECT operation looks as follows with the extension that enables HDFql with batch-

processing capabilities:

SELECT FROM [DATASET | ATTRIBUTE] {select | post_process} [WHERE condition]

 select := select_list | select_like | select_all_use_file | select_use_file

 select_list := {{[file_name] object} | post_process_A} [, {{[file_name] object} | post_process_A}]*

 select_like := {[object_container_name] LIKE {object | post_process_B}} | {file_name [, file_name]* LIKE {object |

post_process_B}} | {[directory_container_name] LIKE file_name object [, object]*} | {[directory_container_name] LIKE

file_name [object_container_name] LIKE {object | post_process_B}}

 select_all_use_file := ALL USE FILE {{{object | post_process_B} [, {object | post_process_B}]* [SKIP]} |

{[object_container_name] {{LIKE object} | post_process_C}}}}

 select_use_file := USE FILE {{{file_name [, file_name]*} | {LIKE file_name}} {{{object | post_process_B} [, {object |

post_process_B}]*} | {[object_container_name] {{LIKE object} | post_process_C}}}}

Version 6 rick@hdfql.com Page 5 of 6

 post_process := COUNT({select | post_process} [, value]) | SUM(select | post_process) | UPPER(select | post_process) |

CAST({select | post_process} AS {TINYINT | SMALLINT | INT | …}) | …

 post_process_A := COUNT({{[file_name] object} | post_process_A} [, value]) | SUM({[file_name] object} | post_process_A)

| UPPER({[file_name] object} | post_process_A) | CAST({{[file_name] object} | post_process_A} AS {TINYINT | SMALLINT

| INT | …}) | …

 post_process_B := COUNT({object | post_process_B} [, value]) | SUM(object | post_process_B) | UPPER(object |

post_process_B) | CAST({object | post_process_B} AS {TINYINT | SMALLINT | INT | …}) | …

 post_process_C := COUNT({{LIKE object} | post_process_C} [, value]) | SUM({LIKE object} | post_process_C) |

UPPER({LIKE object} | post_process_C) | CAST({{LIKE object} | post_process_C} AS {TINYINT | SMALLINT | INT |

…}) | …

 condition := NOT* {condition_type | condition_data_type | condition_exists | condition_values | (condition)} [{AND | OR}

NOT* {condition_type | condition_data_type | condition_exists | condition_values | (condition)}]*

 condition_type := TYPE {= | !=} {GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK}

 condition_data_type := DATA TYPE {= | !=} {TINYINT | SMALLINT | INT | …}

 condition_exists := EXISTS {GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK}? object_name

 condition_values := {VALUES | {{DATASET | ATTRIBUTE}? {object_name | post_process_B}} {= | != | > | >= | < |

<=}} value

 object := object_name[hyperslab | point | chunk]

 hyperslab := [start]:[stride]:[count]:[block] [, [start]:[stride]:[count]:[block]]* [{OR | AND | XOR | NOTA | NOTB}

[start]:[stride]:[count]:[block] [, [start]:[stride]:[count]:[block]]*]*

 point := coord [, coord]* [; coord [, coord]*]*

 chunk := chunk_number [, chunk_number]*

Version 6 rick@hdfql.com Page 6 of 6

